On Sums of Fourier Coefficients of Cusp Forms
نویسنده
چکیده
in case f(n) is the Fourier coefficient of a holomorphic or non-holomorphic cusp form. We shall first deal with the latter case, which is more complicated. Let as usual {λj = κj + 14} ∪ {0} be the discrete spectrum of the non-Euclidean Laplacian acting on SL(2,Z) –automorphic forms. Further let ρj(n) denote the n-th Fourier coefficient of the Maass wave form φj(z) corresponding to the eigenvalue λj to which the Hecke series Hj(s) = ∞
منابع مشابه
A Relation between Fourier Coefficients of Holomorphic Cusp Forms and Exponential Sums
We consider certain specific exponential sums related to holomorphic cusp forms, give a reformulation for the Lehmer conjecture and prove that certain exponential sums of Fourier coefficients of holomorphic cusp forms contain information on other similar non-overlapping exponential sums. Also, we prove an Omega result for short sums of Fourier coefficients.
متن کاملFOURIER COEFFICIENTS OF GLpNq AUTOMORPHIC FORMS IN ARITHMETIC PROGRESSIONS
Abstract. We show that the multiple divisor functions of integers in invertible residue classes modulo a prime number, as well as the Fourier coefficients of GLpNq Maass cusp forms for all N > 2, satisfy a central limit theorem in a suitable range, generalizing the case N “ 2 treated by É. Fouvry, S. Ganguly, E. Kowalski and P. Michel in [4]. Such universal Gaussian behaviour relies on a deep e...
متن کاملFourier Coefficients of Hilbert Cusp Forms Associated with Mixed Hilbert Cusp Forms
We express the Fourier coefficients of the Hilbert cusp form Lhf associated with mixed Hilbert cusp forms f and h in terms of the Fourier coefficients of a certain periodic function determined by f and h. We also obtain an expression of each Fourier coefficient of Lhf as an infinite series involving the Fourier coefficients of f and h.
متن کاملNew Bounds for Automorphic L-functions
This dissertation contributes to the analytic theory of automorphic L-functions. We prove an approximate functional equation for the central value of the L-series attached to an irreducible cuspidal automorphic representation π of GLm over a number field. The approximation involves a smooth truncation of the Dirichlet series L(s, π) and L(s, π̃) after about √ C terms, where C denotes the analyti...
متن کاملApplications of a Pre–trace Formula to Estimates on Maass Cusp Forms
By using spectral expansions in global automorphic Levi–Sobolev spaces, we estimate an average of the first Fourier coefficients of Maass cusp forms for SL2(Z), producing a soft estimate on the first numerical Fourier coefficients of Maass cusp forms, which is an example of a general technique for estimates on compact periods via application of a pre–trace formula. Incidentally, this shows that...
متن کامل